


- -~~L_ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

5. D. L. Aispach , “A stochastic regulator using a certainty
equivalence control with a nonlinear filter for processing
hard -limited data , ” Information Sciences, Vol . 13, 1978.

6. L. L. Scharf and D. L. Aispach , “Nonlinear state estimation
in observation noise of unknown covariance , ” International
Journal of Control, 1978.

7. L. L. Scharf and D. L. Alspach , “No nlinear state estimation
in observation noise of unknown covariance , ” Proceedings of
the 1976 Joint Automatic Control Conference (West Lafayette,
Indiana , July 27—30 , 1976). -

8. D. L. Aispach , “Nonlinear filters in feedback control , ”
Proceedings of the Sixth Symposium on Nonlinear Estimation
Theory and Its Applications, San Diego, California (Sep-
tember , 1975) .

9. D. L. Aispach , “A certainty equivalence control with a non- .
linear filter in the feedback loop, ” Proceedings of the 1975
IEEE Symposium on Decision and Control, Houston , Texas
(December 10—12 , 1975) .

10. D. L. Aispach , “A stochastic control algorithm for systems
with control dependent plant and measurement noise , ” An
International Journal of Computers and Electrical Engineerin g,
2:4 , November , 1975.

11. D. L. Aispach , “A Gaussian sum approach to the multitarget
identification-tracking problem ,” Automatica, Vol . 11, pp.
285—296 (August, 1975) .

I

PUBLICATIONS SUMMARIES 
- 

-

Following are brief summaries of the work contained in the
publications listed in the previous section of this report.

The multitarget tracking problem is defined in Publication #1
as~ that of taking a number of measurements obtained from several
sensors and determining track estimates for any targets that are
“heard” by these sensors. In the real world environment the mea-
surements are cluttered by random noise. In these situations , it
is difficul t to determine precisely which target (if any) corresponds
to each measurement. Typical problems which arise with tracking
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algorithms include: too few tracks are formed; too many tracks are
formed (false tracks); and , inaccurate position , course , and speed - 

- 
-~

estimates are reported. The above difficulties are often the result
of incorrect allocation of data to individual tracks . Algorithms , while
estimating the motion of a given target , inadvertently mix in clutter

and /or measurements from another target.

In order for a correct alloca tion to be made , we must have an

effec tive scoring formula; i.e., some mean s of determining how likely

a given assignment of data is. To be effective , a scoring formula
must produce (on the average) a better score for correct assignments

than for incorrect assignments. Information useful in the scoring

process includes a priori intelligence data (such as initial target
locations) , models of target motion , models of the transmission chan-

p 
nel , and expected moments of clutter for the sensor gain setting being
used. Basically, the score is derived from the residuals which come

out of the processing of a batch of data with the extended Kalman

fil ter . This is used to evaluate the likeithood of potential tracks.
Although “likeithood” has a useful intuitive meaning, we use the

term to mean the probability density function p ( A )  of the track A.
The expected cost of a given assignment is derived with the theory
of extremals bein g used to obtain the expected cost of adding a
clutter point in a track .

In Publication #2 , a specific application of the use of Gaussian
sums to the bearings-only target motion analysis problem was pre-
sented at the Naval Postgraduate School in Monterey . This invited
paper was published in the Proceedings of the conf erence , the main
theme of which was bearings-only target motion analysis.

A summary /review paper (Publication #3) was prepared as an
invited chapter of a text on nonlinear estimation , edited by Dr. E.
Stear. The paper is entitled “Approximate Solutions- of the Nonlinear

Filtering Equations” and the book Will be entitled Nonlinear Estimation

and Filtering Theory: A Status Review. The work done on the

_ _  - - _
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where
n-dimensional state of the system at the time

- p-dimensional control vector that acts on the system

for t~K~~~t < t k .I.l~

q-dimensional plant random noise vector that acts on

the system for t
K 

S t < tk+l;

The random noise sequence* (
~~ , 

w1, ... , w )  ~ ~,k is assumed

to have a known probability distribution p(wk) such that the

are independent between sampling times [i.e., p(~ ,, 
~~~~ 

...
~~ 

=

p(~~)~ p(~ 1), ..., p(~~ ) for all k) .  Sequences having this character-

istic will be referred to as white—noise sequences. The initial

state x is also considered to be random variable with a knownI
,

distribution and is taken to be independent of the plant noise.

The behavior of the plant (1) is observed imperfectly through

[ 
~ measurement quantities ~~ that are related in a prescribed fashion

to the state but which contain random errors.

= , ~~
) ; k = 0, 1, ... , N. (2)

1~~~~~~~~~~ * Throughout this work a vector or scalar with an algebraic super-

script (k) will mean the total array of such vectors which have

occurred at all times up to and including tk .
p

3
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where
— rn-dimensional vector of known measurement data at the

time t
k; -

r-dimensional measurement noise vector contaminating

the data at tk .

The noise sequence is assumed to be a white-noise sequence

with a known distribution and to be independent of the initial state

and all plant noise.

The noise sequence 
~k 

and W
k 

are taken to have zero mean and

the initial state vector to have mean ~~~
‘
. -

= E(y
1) 

= , E(;) = (3)

The covariance of the white-noise sequence and defined by

E(wk w
)
T
) 

~k
6
kJ 

E(v k v .T) = R k 6kj (4)

‘ 
and the initial state covariance P0’ is defined by:

- 

- 

B ( ( x _ ~~~) ( x _ ~~ i) T ) _ P t  
- 

(5)

Based on the system (1) - (2) , it is possible to defi ne the

stochastic control problem . Before doing so, it should be noted that

it has been assumed that the probability distributions for all random

variables are known. It is possible to consider a more general

problem in which - the distributions are unknown. This situation has

4
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been referred to by Bellman [3] as an adaptive control problem to

distinguish it from the stochastic problem that is being formulated

here .

The estimation of the state from the data can be

separated into three subproblems: -

1. Filtering: estimate at the present stage k

y = 0 using all past and current data

2. Prediction: estimate at some future stage k

y < 0 using all available data at stage k+y, y < 0.

3. Smoothing: estimate at some earlier stage k

y > 0 using all available data at stage k+y, y > 0.

in the absence of plant and measurement noise, the problem that

is considered below would have the following simple, deterministic

statement . Determine the state from the measurement data

When stochastic effects are included in the model as in (1) - (2) ,

the statement of the fi ltering problem comes to include an element

of arbitrariness . Certainly, the basic objective is to “estimate”

the state from the data. However , the random effects in the system

model implies that redundant data must be collected in order to

minimize the noise influence on the estimate . Now , it becomes

5
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reasonable to define “best” estimates, thereby introducing the

arbitrariness mentioned immediately above.

In considering the question of estimating ~~ from the mea-

surement data it is necessary to specify the criterion that is

~to be used to define a “best” estimate. However, whatever criterion

is used, the density function pt:~~ / Z
k
~~) contains all of the 

-

information that is required. In fact this density-function provides

the most complete description of the system that is possible. Thus,

— - the estimation problem can be approached from this Bayesian viewpoint

[4,5] without specifying the criterion because one is first concerned

with determining p(x /z~~~
’) or a valid approximation to it.

- k -

- The Bayesian approach described below applies to all three of

the subproblems of filtering, prediction, and smoothing. The actual

calculation of the smoothing density is considerably more complicated

than the other two while the prediction density p(~~/z
k
~~) ~ < 0)

follows simply from the filtering of a posteriori density

In the following discussion we will specialize to the filtering and

prediction cases and most of the research results apply to these

cases.

For systems of the type considered here the a posteriori

density function p(~~~/ z k) provides the most complete description

possible of the so-called state vector which is , of course , a

random variable. p(~~ / z 15, on the other- hand , is a deterministic

6
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function which is, in theory, completely determined by the a priori

statistics of the noise and initial state density function p(~ ,),

combined with the measurement data = 
~~~~~ !~ 

... ‘

If this function is taken as the description of the state, it

reduces to the unit impulse at the true state whenever perfect

knowledge of the state is obtained. Thus, accepting this as a

valid definition of s-tate, it becomes necessary to obtain explicitly

the a posteriori density function or a “good” approximation to it in

order to solve both the estimation and control problems. In fact,

once this is accomplished it is possible to estimate the random

variable state ~~ according to any criterion function.

While the a posteriori density provides a complete solution of

the filtering problem, it has the disadvantage that it is a function

rather than a finite-dimensional estimate. If the problem were

deterministic, the solution would be provided by the vector

• p that satisfied the plant and measurement equations for all k.

A similar “solution” is commonly sought for the stochastic problem .

To obtain estimates 
~~Jk ’ useful , but -often arbitrary, performance

criteria are defined which lead to “optimal” estimates [6].

Examples of such criteria are the minimum mean square error ,

minimum absolute deviation, maximum a posteriori, and maximum

‘ likelihood. The Bayesian approach yields all of the informa-

tion necessary to obtain estimates satisfying any of these

7
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- criteria so it is not necessary at this point to be more specific

about the performance criterion . However , it may be instructive to

see a mathematical statement of the estimation problem for the more

common criteria.

MINIMUM MEAN-SQUARE ESTIMATE

The estimate 
~k I k  of the state based on the measurement

data is chosen so that the mean-square error - 
-

E[(~~
_
~~~Ik

)TQ~~
_ 

~~Ik~] 
is minimized . The estimate that

accomplishes the minimization is provided by the conditional mean

~MS F k i
~k I k E

~~k ! . (6)

p MAXIMUM A Posteriori ESTIMATE 
- 

-

The estimate of the state based on the data is

chosen so that the a posteriori density is maximized.

‘4
I4IAP k\ I k\

= ma~ P~~~~Z )  (7)

MAXIMUM L IKE LIHOOD ESTIMATE

The estimate of the state based on data is

chosen so that the likelihood function A(x.K
) is maximized.

p(~ IQ
(
~ 
‘!~) 

= max p(~~~~~) = max (8)

8
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MIN INUM ABSOLUTE DEV IATION

The estimate 1c~~~k 
of the state based on data is

chosen so that the expected value of the absolute value of the error

is minimized.

• 
~k l k  = mm E I X jk

_ XikIk I/ .~~
] 

- 

-

Note that all of these estimates as well as many others can be

obtained from the a posteriori deviation function.

III. ThE BAYESIAN APPROACH

Much of the current research on nonlinear filtering is con-

cerned with recursive formulations in which the solution for the

solution of the (k-l)th stage is used to obtain the solution for the

kth stage. Only the recursive formulation shall be considered here.

A general solution of the recursive filtering problem can be
I;

obtained through Bayes ’ rule.

The major feature which distinguishes this approach from other

possible approaches is the assumption of the existence of well de-

fined a priori probability density functions for all unknown vectors

entering the plant or measurement equations . In the Bayesian

procedure the measurement data is used to modify the probability

density function of the state vector based on all previous measure-

ments and this a posteriori density function is used together with

the known dynamical plant and plant noise probability density function

: T ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



• to obtain the predicted density function for the state at the next

stage. Thus the probability density function for state at stage k

based on all available measurements is calculated in a recursive

• fashion.

In the Bayesian approach to determining recursive estimation

and control policies for stochastic systems one is concerned primarily

with the a posteriori density function, p(~~ Iz
1
5, and the one stage

predicted density function, pC Izk). These density functions

contain all of the information required for solution of both problems,

4. and can be described by a recursion relation that is useful for

obtaining recursive filters and closed loop control policies [4,5,7,8].

These recursion relations are given below:

P(
~~ kk)

~ (~~
I
~

k)  = 
/~ 1~

k_ l \  (10)

fl-k-

= 

J
~
(
~~~ i i~~~~1) ( i  ~~- l)  dxk l  (11)

where the normalizing constant is given by:

- P(!k!~~1) 
f
~
(
~~~

k-
l) p(~~~~ ) dx.K - 

(12)

and where

~ p(~~ ) (13)

I

I
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Utilization of (10) to (12) in conjunction with the prescribed

initial condition (13) provides the information required f or the

determination of p(~~jzk) for any k. Thus, a general solution of

the nonlinear filtering problem is available. Unfortunately, the

actual evaluation of the Bayesian recursion relations for a specific

nonlinear system is not accomplished in a trivial manner. It is to

the problem of developing computational algorithms for evaluating

(10) to (13) for specific systems that the remainder of this

discussion is directed.

~4hea the system is nonlinear or when the noise is nongaussian,

two problems arise. First the integrations in the Bayesian recursion

relations cannot be carried out in closed—form and, second, the

moments are not easily obtained from (10). The moments are useful in

establishing practical estimation and control policies so their

determination is an important consideration. These two aspects

pinpoint the source of the difficulties involved in the determination

of e9tiination and control policies for nonlinear and/or nongaussian

stochastic systems when trying to apply the Bayesian method.

The densities p(.~j~~) and ~~~~~~~~ 
can be written more

explicitly in the special case that the noise terms and

are assumed to be gaussian and to enter equation (1) and (2) in an

additive fashion. Then by assuming that ~~~~ and exist, we

can write these densities as

11
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• p(.~ I~
) k~ exp {_½ i

~~ 
— h ( f l T 

‘~i
’t.!~ 

— hk(!Sk~~~ 
(14 )

- P (~~+l I2~k
) = k

~ 
exp - ~~~Q]

T Qk~
’L
~~~l 

- 
~k

(2
~k)]} 

(15)

Given the a priori density functions, the a posteriori density

functions p(~~~zlo) can be determined for any sampling time tk if

the integrations required can be accomplished in a closed—form. In

general, this cannot be done and suggests that some type of approxi-

mation must be considered. When only the first two moments are

known, or the initial density is nongaussian, it is common to approximate

the density as a gaussian with these first and second moments.

Another method is to linearize nonlinear problems around a known

nominal and to assume the noise is gaussian in the linearized problem.

The reason for wanting the problem in this form is well known [2]. In

this case the a posteriori and the predicted density functions are

Gaussian and the Bayesian recursion relations can be solved in a

closed form. In fact, since a Gaussian density function is completely

determined by its first and second order statistics, the functional

* recursion relation reduces to a recursion relationship for these

statistics. These relations have come to be referred to as the

ICalman filter equations [1,2].

12
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IV. THE LINEAR CASE

In many applications of the theory a nominal trajectory in

State space is known or assumed and the nonlinear dynamical and

measurement equations are linearized about this nominal . Because

of the comparative ease of solution of this linearized problem rela tive

to the nonlinear one and because of its applicability in many instances,

this linear problem has received much attention. The linear version

of Equations (1) and (2) are: -

= Fk !k + “k !~k + 
~k 

(16)

= 1
~k ~~ 

+ ; k = 0 , 1, ... , N. (17)

The assumption that ~~~~~~, ~~ are independent white noise sequences,

both independent of ~~~~~~, will be made here, but is not necessary [9].

C 
~k ’ ~~~ 

and r
k ~~ are known deterministic quantities at time

and the statistics of ~~~~~~, ~~, and are all defined in Section II.

If, in addition, ~~ , ~~~~~~, and are gaussian random variables,

equations (10) — (13) can be solved exactly to give:

= P~ H~~[H~ ~
‘k H~ 

+ 
]
~~l 

(18)

= + - 

~k (19)

Pk = P ~~
_ K

k H.K P
~ 

(20)

I
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p

T
c+1 = F~ 1’k Fk + 

~k (21)

~~+l = F ~ k + Fk !~k (22)

where

= E (~~ I z ~ ) (23)

= E(~~JZ
k
~~) (24)

~k = E [c~ - ~~) (
~~ 

- ~~)
T I zk] (25)

P~ = E 
[

~~~~~~~ ) (~~~~~~~) T J Z k-1] (26)

and where can be any function of ~
k 

and the a priori data and

thus can be a function of

These recursion relations are exact for the Gaussian problem and

are referred to as the Kalman filter [1,2]. Several, characteristics

of th4;s filter should be noted. First, the mean of the a posteriori

density ~~ always provides the minimum mean—square estimate for the

state. In this case of linear systems, when the a priori densities are

Gaussian, the mean provides the optimal estimate for a large class of

estimation criteria [6]. Secondly, the P matrix arising in the

Kalman filter is the covariance of the error in the estimate, and it

is independent of all measurements.

If the noise is non—Gaussian and the minimum mean—square error

estimate is desired, the Kalman filter still provides the best “linear”

estimate for state. In this case, however, estimators with smaller

14
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error variances are possible. This can be seen from the fact  that ,

in general, the variance is a function of the measurements. A simple

example showing this is given below .

Consider the scalar one stage plant :

z
0 

= x0 + v 0 (27)

where both x0 and v0 are uniformly distributed on (-1, 1) with

variance a2 = 1/3. The approximation of x0 and v0 by gaussian

random variables gives :

= N(v 0, 1/3) = exp(- l .5  v~ ) / 1211/3 (28)

N(~c~, 1/3) (29)

PA~~O I Z O) = N( x0 - z0 / 2, 1/6) (30)

Thus giving the linear or Kalman predicted variance of 1/6 . The

exact value of a2 is plotted in Pigure 1 versus z0 and the

Kalman approximation to it, = 1/6, is also indicated.

With the true distribution of x
0 

and v
0 

the measurement must be

contained in the interval (-2, 2) while for the sam e system with

gaussian noise any measurement is possible.

For both the true and approximate cases the mean of the

a posteriori density function is ½ ~~~~~~. This is because the true

mean is linear in for one stage. This is not true for subsequent

15
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stages and as a result the Kalman filter only gives the best linear

projection of the best minimum variance estimate for more than one

Stage. However, as shown in Figure 1, the major problem with the

Kalman filter is that the variance calculated by it is not a very

realistic approximation of the true variance. This carries over to

the nonlinear case and has been one of the major problems of the

linearization procedure [io]. Note that in this simple example the

true variance can be from twice the Kalman estimate to zero. If

one wants to find an estimate for state, even in the linear non-

gaussian case, different from minimum variance, then the ~alman

estimate does not even represent a best linear estimate. This

simple example has been considered at length in references [11,121

where a larger number of stages and where several approximate

density functions were compared with the true one. Other cases of

linear systems with nongaussian noise and initial states are discussed

in references [li—is). This special case of linear systems with non—

gaussian noise definitely requires nonlinear processing of the data

in order to form optimal state estimates.

16
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V. APPROXIMATE SOLUTION OF ThE BAYESIAN RECURSION RELATIONS
I

As discussed in the previous section, the only general system for

which closed—form solutions of (10) — (13) can be found is when the

plant and measurement equations are linear and the statistics of the

noise and initial state are Gaussian. Then, the a posteriori density is

Gaussian and the conditional mean and covariance are described by the
- Kalman filter equations. Unfortunately, it is necessary to seek the

I)

solution of the Bayesian recursion relations numerically for nonlinear 
-

or non—Gaussian systems. - 

- 

-

In essence, we are faced with the problem of evaluating multi-

dimensional integrals. Certainly, the determination of p(~~ Iz’~~~)

using (11) requires an integration. The calculation of the filtering

density p(~~ Iz~~
’1) using (10) is seen to require the multiplication

of two dens ity functions. This does not represent a difficult task

other than in the storage requirements that are implied in such an

C. operation. However, the normalization and the determination of

momen~s requires integration of the product.

We shall first consider the solution of the problem from a

very basic point of view . Clearly, the a poSteriori density is a

random functicn of the data. When a measurement realization is

available, then w~ ~~~ the density as a function of the state xk.

To emphasize this and to reduce the notational complexity, let us

make the following conventions . The prediction density shall be

17
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written as

p(~~ tz
k_ 1
) ~ ir(x) 

~~JP(n) 
q(x a) da . (31)

Using (15), this becomes

~r () = JP(!!) c(!~
f
k(W) 

dn . (32)

We have renamed as x and 
~k 1  as n . The subscripts denoting

the sampling time have been suppressed since they play no active role

in the discussion. That is, the Bayesian recursion relations have

the same form at every sampling time.

Next, the filtering density shall be rewritten in the following

manner:

(~~~/z
k) ~ p(x) clr(x ) m(z-i~~~&) (33)

where c is the normalization constant , it is the prediction density -:

as in (32), and m is the density of z given x. The measurement

z can be regarded as being known.

Consider the calculations required for one complete stage of

the recursion. The filtering density p is computed as the product

— of ,r and m. Note that the calculations are started at t1 with

it equal to the a priori density p(x
1
). Thus, p(

~~ Iz
k
) / Ck is

readily formed for all k. The normalization constant is formed as

C ’ = f11~s)m(z _ h(x)) dx (34)
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The integration generally must be accomplished numerically. It is

immediately apparent that a considerable computational burden can

be avoided if c is not determined. If one is interested in

obtaining only the MAP estimator ~~~~I’, then c does not have to

be found. However, if the mean-square estimator is desired

or if any moments of the distribution are to be computed , then an

accurate value for c is required.

After determining p, the integrand in (32) can be fo rmed.

The prediction density ii is obtained by carrying out the nonlinear

convolution indicated in (32). Again, it is generally necessary to

resort to numerical methods to determine it. Since it is a function

of x, the convolution implies that a large number of numerical

integrals must be computed; essentially, an integration for each

possible value of x is required .

After determining p and it , it is natural to compute moments

of the a posteriori density. As noted above, the minimum mean-square

estimate is provided by the conditional mean. The quality of the

estimate is commonly gauged by forming the conditional covariance

matrix. Conceivably, higher-order moments might also be determined as

indicators of the effect of the nonlinearities and of the deviation

of the a posteriori density from a gaussian. Of course, these are

not ensemble statistics but are associated with a specific measure-

ment realization.

$ 
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P A large number of methods for the evaluation of the Bayesian

recursion relations have been proposed and studied. These methods

have the common characteristic that the calculations are performed

after defining a “grid.” The grid points provide a finite collec-

tion on which approximations can be based. Obviously, these points

are contained in a finite region of state space even though the

integrations generally are carried out over infinite intervals.

Thus, the functions must be such that there is negligible probability

mass outside of the region containing the grid points. The manner in

which the grid is defined is an important consideration in the

development of an algorithm.

Let us consider an approach to the evaluation of the nonlinear

convolution (32). Suppose that a specific value is prescribed

for x so the integration will yield a well—defined number. The

numerical integration of (32), essentially requires that the
C

integral be replaced by a summation involving a discretization of

the integration-variable n. The manner in which the grid points are

defined may be accomplished arbitrarily or as in integral part of the 
-

quadrature method. For example, in an nth-order Gauss-Hermite -

quadrature, the grid points are chosen as the zeros of the nth

Hermite polynomial. Let {j 1, 2 , ... , Nk l
} denote the

Nk l  grid points for the variable n.  Furthermore , suppose that

is regarded as the ith grid point for the discretization of the

20 
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variable mc into Nk points . Then , the convolution (32) is

replaced by

Nk l
P(~~) = ~~~ c * .P ( T , . )  P(~~~- f(ii~)) ; i l,2 ,..., N~ . (35)

The coefficients ct1 represent the weighting coefficients of the

numerical integration scheme . Clearly, if there are a large number

of grid points the storage and computational burden can be enormous,

even for present-day digital computers .

Because of the storage and computational burden implied by

solving the Bayesian recursion relations, it is natural to seek ways

in which these requirements can be reduced . Effectively, the non-

linear filtering problem can be regarded in this completely corn-

putational context . In the subsequent discussion , we shall review

some the approaches that have been proposed , summarize the types of
C

results that have been obtained, and make suggestions for areas

requiring additional investigation.

The earliest and by far the most extensively applied approach

was motivated by the existence of the general solution for linear,

gaussian systems (i.e., the Kalman filter). In this case, a single

grid point is defined at each sampling time. Then, the system equations

f and h are linearized relative to the grid point. This approxi-

mation of the system itself implies that the state and measurement

perturbations are gaussian so the Kalman filter can be applied directly.

21
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A number of generalizations to include hi gher order perturbations

have been proposed. We shall discuss this class of methods in

Section VI . Since the approximations can be regarded as being most

accurate in some nei ghborhood of the single grid (or reference)

point, we shall refer to them as local methods. More recently, a

- second class of techniques has emerged which explicitly attempt to

obtain solutions by defining a grid over the entire region containing

signi ficant probability mass . This class shall be referred to as

global methods and is discussed in Section VII.

VI. LOCAL NONLINEAR FILTERING METHODS

Virtually the only recursive nonlinear filtering method that

has seen application to practical problems is the so-called extended

Kalman filter. In this approach , a single grid point is defined at

C 
each stage and the system is linearized relative to this point. If

the grid point is chosen as the “best” estimate (i.e., the approxi-

mation of the conditional mean) , the resulting estimator is called

the extended Kalman filter [2 ,10]. This is apparently the simplest

possible approach since it involves a single grid point and linear

equations at each sampling time. In addition, the grid point at the

kth time is obtained directly from the previous grid point and the

appropriate system equation . It is also a most crude approximation

and its validity depends heavily on the quality of the linear

approximation .

22
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Practical experience has demonstrated that the assumptions

inherent in the extended Kalman filter are often valid and satisfactory

results are often obtained. There are also well-known disadvantages

and difficulties associated with the application of the extended

Kalman filter . The manifestation of these difficulties is commonly

referred to as the divergence [2,10,16] problem. Divergence is said to

occur when the actual error in the estimate-becomes inconsistent with

the error covariance matrix approximation provided by the filter

equations . This situation arises because of errors in the filter

model , either as a resul t of errors in the basic model or as a - -

result of the linearization errors.

Experience with the extended Kalman filter in a variety of

applications has led to the definition of a number of subproblems

that may have to be solved in order to develop a useful algorithm.

A. Filter Initialization

Before utilizing the Kalman filter, it is often necessary to

process a small amount of data to obtain reference values to be used

in the linearizations . Re gardless of the manner in which it is

accomplished , the filter must be initialized with suitable values for

the estimate and error covariance matrix in order to obtain reasonable

estimates at subsequent times .
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B. Form of the Filter Model

The linearization errors can be reduced in many cases by the

form used for the system model . The choice of coordinate system can

be importan t [17]. Furthermore, the use of transformations [18] to

obtain models which are more easily linearized are often possible.

C. Iterative Calculations

To improve the linearizations, One can iterate through a small

amount of the data (e.g., one sample at a time) and use improved

estimates in the lineari zations before reprocessing the data [10] .

D. Divergence Control

Divergence often occurs because the model does not adequately

describe the system. To compensate for model errors, the plant and

C measurement noise covariance matrices or the Kalman gain matrix

direc tly can be increased . This has the effect of causing the error

covariance matrix to be increased and in a way to cause past data to be

discounted rela tive to more recent samples . A large number of methods

have been devised to compensate for model errors [e.g., 2 ,10,19].

C E . Second Order Filter

In our Bayesian context , the use of the extended Kalman filter

implies that the a posteriori density is gaussian . This can be an

extremely poor approximation of the actual density function if all

24
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possible values of the state x are considered. Other local (or

perturbative) schemes have been devised in an effort to improve the

quality of the approximation . The obvious extension [20,21] is to

consider retaining the second-order terms in the expansion of the

system functions £ and h. Commonly, the assumption is made that

the a posteriori density is still gaussian even with the presence of

the second-order terms . This assumption is made in order to overcome

the “moment closure problem” which is discussed briefly below.

For the purposes of discussion, suppose that we are considering

a scalar, second-order system

= f
k

mck_l + g~mc~_ 1 + wk l  
-

, (36)

Zk = hk
xk + e

k
x1
~ 

+ Vk (37)

Suppose at the (k-l)th sampling time that we know

E 
[
~~

11~
k_
1] = 

~~-llk-l 
(38)

and
/ k-.1\var
~
xk l  !. 

) 

= 
~k-lIk-l 

(39)

The mean value E[xklzk_1] is seen to be

E[x~~z~~1J = 
~~{k- 1 ~k 

xk lik i + 8~(Pk l ik i + 

~~~ 1Jk ~ 1) . 
(40)

I
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To determine the variance, we note that

1~’xk
_E
Ixk k-li = Xklk l

= ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (41)

var(xklz~~l) = 
~~~ _ 1 

~(fk 
+ 

~~~~~~~~~~~~ 
~k -1Ik-l  (42)

+ 2~k(fk + ~~~~~~~~~~~ 
~~-lIk -1

+ ~~~~~~~~~~~ - P
~~1Ik1 ) , 

-

where 
~k-1Ik-l 

and represent the third and fourth central

moments of Xk l  given ~
k_l Thus, the calculation of var(xk(z~~

’)

requires knowledge of the first four central moments of X
k l  given

~
k_l 

For this example, the calculation of the ith moments always

requires knowledge of the 2 ith moments at the preceding time. This

implies that cne must know moments of every order and is referred to

in general as the moment closure problem. To close the problem, it

is common to assume that moments of order greater than some integer

correspond with gaussian moments . For example , if the 3rd and hi gher

order moments are assumed to be gaussian, then for all k

Vk = 0  , 
(43)

~k
3
~’ (“)

26 -

I 

-_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



~~~~~~~~~~~
—.‘- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

- - - 
-

p

• F. Higher Order Polynomial Expansion

The first serious attempt to eliminate the gaussian assumption

involved the use of Gram-Charlier or Edgeworth expansion [22]. The

expansion is a series of polynomials which are orthogonal with

respect to a gaussian distribution and can be used to represent a

wide class of density functions. The initial use of this non-.

gaussian approximation was based on a perturbative approximation.

As a consequence, it suffered from the disadvantage that a large

number of terms were required to obtain a reasonable approximation

of a distinctly nongaussian density . The behavior of the estimator

obtained from this density approximation was found to be very sensi-

tive to the quality of the approximation. When the infinite series

is truncated, as it must for practical application, the resulting

series can become negative over portions of the state space.

Consequently, the density approximation is not itself a density .

This can introduce unexpected influences into the behavior of the

estimator, particularly if the integral over the region in which the

function is nonpositive has a nontrivial value. Subsequently, other

density approximations using the Edgeworth expansion have been pro-

posed [e.g., 23,24,34]. This local method seems to be most useful when

the a posteriori density is unimodal even though it is not Gaussian.

27
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G. Parameter Identification

In certain cases the dynamic system, the measurement function ,

or even statistics of the noise or initial state can contain unknown

and constant elements. Much of the work classified as system

identification addresses this problem which is a very special case

of the nonlinear estimation problem. Good descriptions of these

techniques ~ contained in references [25,26].

VIII. GLOBAL NONLINEAR FILTERING METHODS 
-

The obvious disadvantage of the local methods stems from the

use of a single grid point on which to base the approximation .

During the past few years, several methods have been proposed which

attempt to improve the approximation by considering the density at —

many points selected through the region containing nonnegligible

probability mass. These methods can be regarded as representing

specific examples of ways in which the numerical integrations

discussed in Section V can be accomplished. Some of these global

approximations are reviewed in this section.

Quite possibly, the first step toward the development of a

global method was taken by Magill [27J with a subsequent generaliza-

tion by Hilborn and Lainiotis [28]. They considered linear systems

with unknown parameters. To deal with this nonlinear problem,

C -
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a grid was established by discretizing the unknown parameters and

by considering the resulting collection of linear filtering problems .

A global method for the general nonlinear f ilter ing problem was

proposed by Bucy [29] when he introduced the point—mass method .

This approach was elaborated upon by Bucy and Senne [30] at the

First Symposium on Nonl inear Estimation in 1970. At this same

meeting Aispach and Sorenson [31] proposed the gaussian sum

approximation as an alternative approach . Subsequent Symposia on

Nonlinear Est imat ion included many extensions and sa~-~

the introduction of other techniques. Center [32] provided a unifying

theoretical framework by considering the problem in the contex t of

generalized least-squares. His approach permits, conceptually at

least, the development of a countless number of approximations .

In the Second Symposium on Nonlinear Estimation, Center discussed

as specific examples the point-mass, gaussian sum, and Edgeworth

expansion approximations. Later [33], he also discussed the spline

approximation method proposed by Jan and de Figueiredo [12].

All specific global methods must provide solutions of the

following general problems. -

(a) An initial grid must be defined . It is important that the

region encompassed by the grid includes the true value of the state.

In addition, the number and manner in which the grid points are

distributed within the approximation region must be defined .

29
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(b) A procedure must be defined for defining the grid at each subse—

quent sampling time. While the grid could be the same throughout , the

dynamic nature of the problem and the desire for computational efficiency

indicate the advisability of redefining the grid at each sampling time.

(c) Given the grid, a method must be selected for approximating t1’.~

functions and/or for carrying out the Bayes’ rule calculations. The

approximation method and the grid selection method are not unrelated

and the implementation of a particular method may require interaction

between the two considerations.

Below we will show in some detail how much interaction occurs

for one of the methods in order to give the reader a feel for such

interaction in one particular case. The other methods have been applied

in similar problems and are briefly described below and described in

detail in the references.

t Aispach and Sorenson [ 11 ,31,34 ,35] proposed approximating the

~~postcriori density function by a weighted sum of Gaussian densities.

For example, a density p is approximated by the density* 
~a

Pa(& 
= 

~ 
c*iN~
(
~
c
~
,P1) . 

q
where the weighting ~oefficients a1 are nonnegative and ~I a~ = i

i= I

*N (a ,B) ~ ( 2ir )
_1

~’2 (det B) 1”2 exp {— 
~~~ 

(x — a) T3 1 (~ç — 
~)} .
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This approximation is motivated by the realization that converges

uniformly to p for a large class of densities. Thus, the approximation

~A 
can be made as accurate as one wants through the choice of q. The

idea of using this type of approximation has been suggested by several

others [e.g., 13,14,15,36]. -

Af ter q has been def ined, it is necessary to assign values to

the parameters a1, 
~~~~~
, p1, {i = 1, 2 , ..., qi. The mean values

represent grid points for the approximation. The selection of all of

these parameters must yield a satisfactory representation of the

- 

- 
a posteriori density. It is natural to formulate their determination

as an optimization problem. Let us choose a1, ~~~~~~~ 
P~ , {i = 1, 2, •.., q}

- - so that the generalized least—squares performance index,

E LS =f[P ( ~
) — 1’a~~~ l dx , (46)

‘
C

is minimized subject to the constraints that for all i, a~ ~ 0, E a1 = 1

and is a positive semidefiñite matrix. Figures 2 to 4 show the

approximations resulting in fitting three different scalar densities

by such a direct optimization method. These densities contain most

of the features that can give difficulty in the various density func—

tions encountered in practice. These difficulties include discontinu—

ities, skewness, unboundedness, and the problem of converging to zero

both faster and slower than the gaussian.
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The first example that is discussed here is the gamma density

function. It is defined as:

0 f o r x < O  -

p (x) 
— 

(47)
x e X f or x ~~~O

6 -

This distribution has a mean value of 4 and second, third, and four th

central moments of 4, 8, and 72, respectively. Figure 2 shows the

result of fitting one to four gaussians to this density. Note

that in two cases several moments of the approximate gaussian sum

density were constrained to match the moments of the true density.

The bad effect on the L2 fit indicates difficulties with this and

other moment matching techniques.

The second density approximated is a uniform density function:

i ¼ —2<x<2
1. 0 elsewhere (48)

4 -
- 

:. The obvious symmetry was imposed on all approximate densities in order

to exactly match all odd moments. The results-of fitting 2 to S

gaussians to this density are shown in Figure 3. Note the appearance

of aJtGibbs phenomenod~on the last approximate density.

The last density approximated and repor ted here is a product

of two independent zero mean gaussian random variables.

32
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z = x y  (49)

— 

p(x) = N(x, 4) (50)

p(y)  = N(x, 4) (51)

p(z) = K0 (z/4) / 4ir (52)

where K0 is the modified bessel function of the second kind of order

zero. Because of the symmetry of this density, all odd moments are

zero. The second and fourth central moments are:

a2 
= E(z 2) = 16 and E(z 4) = 2304 (53)

This density and one, three, and five gaussian sum approximations

to it are shown in Figure 4.

The development of such approximations requires the utilization of

numerical search techniques. The approximations can be determined off line

but may require extensive calculation. This approach may not be accep-

table in many circumstances. Thus, in reference [34], an alternate sampler

method was developed and entitled the “theorem fit” approach. This is

done as follows:

1. The number of Gaussian terms in the sum, n, is chosen

based on previous experience.

2. The region (a,b) over which the density fun ction is to be

approximated is chosen.

3. The mean values a
1 for each Gaussian are placed uniformly

in:dde (a ,b).
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4. The weighting functions cz .~ are selected to be propor-

tional to the value of the density function to be

approximated at ai, and are normalized to one .

5. The value of the variance is taken to be independent

of I and is found either by:

5.1 By a one—dimensional search to minimize the L 2

— 

- error;

or

5.2 Is chosen such that , a = z ~~~~~~~~~~~~~~~ for a prespecif led

value of z.

The first approach is called the “best theorem f it” and the

second the “smoothed theorem f it”; no search at all is required in

this second method of obtaining an approximate density.

If J involves more than one region,a modification of this 
-

technique has been used which treats each region separately and takes

the number of terms in each region to be proportional to its measure .

Such approximate densities for the uniform and gamma densities are

shown in Figures 5 and 6. In these figures the parameter z has

been chosen to be .6. -

Gaussian sum densities can also be utilized to approximate

densities of greater than one dimension. In doing this it is possible

to take. into account natural symmetries of the density to be approxi—

mated. For example, suppose the measurement function is given by:
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z = h(x) = .1 x1 + (x 1—x 2) 2 + Vk -

2— E (vk ~ -
= .1

The measurement function is then given-by

P(z1x1) = N(z — •1x 1 + (x 1—x2) 2 , .1) (56)

or for the particular case of z equal to 1 this function is shown in

Figure 7(a) . If the a priori mean is zero

~~~~
= ( ) (57)

\ 0/~

and this is taken as the linearization point, the approximation utilized

in an extended Kalman filter for this function is shown in Figure 7(b) .

A simple two—term gaussian sum shown in Figure 7(c) gives a far better
t. approximation to the true density and a 30—term smoothed theorem fit

density shown in Figure 7(d) captures even more of the fine details

of the original function.
C

Another example of using a gaussian sum density to approximate

a two—dimensional function arises in the passive bearing ’s only

tracking problem (reference [34]). A target is located at or

~~~ ~~~ 
in Figure 8(a) and is observed by a ship at location S

which measures the angle a. This geometry is shown in Figure 8(a) .

The measurement function is

4 35
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= h(x
k
) tan ’ 

~~
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— sin 
~k~~

’
~~ k 

- cos 
~~ 

+ V
k 

(58)

2 2 2E(v
k 

) = = .01 radian (59)

and the function P(zk/~k) is shown in Figure 8(b). If an extended

Kalman filter linearizes this function around the most recent line

of bearing the approximate function shown in Figure 8(c) results.

- 
- This is too wide if the target Is closer than the a priori estimate

and too narrow if the target is farther from the origin than the

original estimate. This feature of the approximation can lead to

“range collapse” or divergence where the estimate steps to the origin.

However, the general shape of this extended Kalman filter approxima-

tion is correct. If one linearizes about the last estimated position

which, however, happens not to lie in the measured bearing, very bad

approximations, away from the linearization point, can result. Then

one gets functions which bear little resemblance to the true mea—

- surement function just as in the last example. A ten—term gaussian

sum “smoothed theorem fi t” is shown in Figure 8(d). Note in Figures

8(b) and 8(d) it has been assumed that the true state cannot lie

greater than six orbital radii away from the observer. This accounts

for the cutoffs on both figures.

There are a variety of ways in which these general approxima-

tions can be utilized. For example, if the a priori density is

approximated by a Gaussian sum density with N terms, then this

defines a generalized grid in the initial state space. If the plant

36

-~~ -~~~---~~~~

— ;.~~
. .,— 

~~ - .- _._ .___.~,_____ ~~I ~~~~ — -.‘—



- - - - ‘ -‘ -- --~- r ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~ ~~~~~~~~~~~~~~~ 

-. - ‘ -—. .-—.-
~-----.-—----.---‘.--- --——-——---_-

p
and measurement functions are linear with gaussian perturbing noise,

then the evolution of each term in the a priori gaussian sum density

is described by a linear Kalman filter. For example, in the simple

example described earlier with a scalar state and uniform initial

state density, the evolution of the true density, the gaussian sum

approximate density, and a single linear Kalman filter density with

t ime are shown in Figure 9.

In this case only the a priori density P(x1) = 11(x) needs to be

approximated by a gaussian sum, and the a posteriori density

P(xk/~~
) can easily be shown to be a gaussian sum with N terms.

The more general case of non—gaussian plant and measurement

noise each approximated by gaussian sum has also been considered.

In this case the a posteriori density is also a gaussian sum but

the number of terms in the density grows with the number of stages.

C This is shown in detail in reference [11].

The more general case of a nonlinear measurement equation

(zk = h
k

(x
k

))  is considered in reference [35]. Here , in order to

enfold the measurement z, it is necessary to multiply 11(x) by

m(z—h(x)). If h is nonlinear, the product is no longer a Gaussian sum.

One approximation at this point is to - linearize h(x) about each of

these grid points . Because the variance of each term of the sum

is small, the linearization must be valid only in a small region

-: 8urrounding the grid point. The extended Kalman filter can be

37
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applied at each grid point to obtain the means and covariances P1
needed in the gaussian sum approximation of the filtering density

from that of the prediction density. The extended Ka lman f i l ter  is

used to obtain a grid for the next sampling time and to obtain the

gaussian sum approximation of the prediction density ir. Next,

using Eq. 32, the new predicted density 11(x) is calculated. If the

system dynamics are linear, then this can be solved exactly and again

the predicted density is a Gaussian sum. If not, fk(x) must be

linearized about each grid point as in an extended ICalman f ilter and

then the next stage density is again in a Gaussian sum form. A simple

quadratic scalar example of this is taken from reference [35].

Consider the scalar system with the plant described by

2
Xk.fl = xk + flXk + wk. (60)

The state is to be estimated from the measurement data where

Z
k 

= ,~~2 
+ vk, k = 0 , 1, ” . (61)

The initial state and the plant and measurement noise sequences are

independen t , white, and gaussian with

E(~c0’) 1; E[(X
0 

— ~~~~~ ~ ; (62)

E(wk) — E(v
k) = 0 ; (63)
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E(w k
2) = ~~

2 E(v
k
2
) = ci 2 

. (64)

The a priori mean and variance of the initial state are held at these

values for all examples presented here, although others have been

investigated. The basic parameters of the system in the present

study are the variances of the plant and measurement noise and the

relative effect of the plant nonlinearity r~. These variances have

been chosen to be independent of k f or clarity of presentation only.

The value of each of these parameters will be specified for each

case presented .

Results for four different filters are presented and discussed ,

although not all results are included in Figures 10 and 11. When

a filter performs very badly , it may fall off the scale of the charts

and thus not be shown. The first three are filters that have been

considered previously in the literature and in which the a posteriori

and predicted density functions are assumed to be gaussian at each

stage. The first of these is the extended Kalman filter. This is

the filter most often used in practice. The second filter uses one

iteration to improve the reference values used in the linearization.

The third filter is the gaussian filter of [20], where second—order

terms are used to modify the mean and variance of the next stage

predicted and a posteriori density functions. The fourth is the

gaussiap sum filter.
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The characteristics of the filtering problem depend heavily on

the position of the state variable X
k 

with respect to the point of

symmetry of the measurement nonlinearity. When X
k 
is near that point

(zero in this case), the ratio Xk /O is small and the gaussian

filters tend to diverge. As the state moves away from this point,

the measurement nonlinearity becomes increasingly more negligible

and the gaussian filters tend to perform well. This is particularly

clear when there is no plant nonlinearity r~ = 0 and no plant noise

a = 0. In this case the relative performance of the different
V

filters depends most strongly on the value of the state variable

and less on the particular measurement realization under considera-

tion. For this reason it was found best with a limited number of

realizations to choose the true initial value of state as a parameter

and only select the measurement and plant noise from a random nuts—

ber generator . This was particularly useful in the Monte—Carlo

C averages, but was done in all the cases presented below.

When there is no plant nonlinearity [r~ = 0 in (60)], it is

impossible from the available measurement data to discriminate between

the true value of the state and the negative of that value. Thus

p(xklzk) should become bimodal if the value of the state is nonzero.

This is, of course, not possible for any of the gaussian filters.

When there is no plant noise or nonlinearity , the a posteriori

density can be computed exactly. Under these conditions it is

(except for a normalization constant) simply given by
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p (x.1jz
k) cPx0(x0) ~v0

(Z0 
— h(x

0
))”. Pv

k
(z
k 

— h(x k) )  . (65)

The density function of a specific realization is depicted in Figure

* 10. The values of the system pa rameters are stat ed in the figure.

The gaussian sum filter provided an approximation that is indistin-

guishable from the true a posteriori density for the example. In

this case the a priori density p(x
0) was approximated by a sum of

40 gaussians. Observe that the second—order filter provides an

extremely conservative result and estimates the state to be zero

instead of 10.2. The extended Kai.man filter tends to diverge.

Only the iterated filter performs at all satisfactorily and pro-

vides an estimate of approximately 0.2.

It is interesting that the minimum variance estimate that one

would obtain from p(x~jz
k) provides an estimate that is between

F the two peaks (i.e., since the conditional mean is the minimum
‘ C

variance estimate). Clearly, this estimate is very conservative

and, consequently, may be unsatisfactory. A maximum likelihood

estimate would yield a value close to the true value or its

negative . -

When a plant nonlinearity f rom (61) Is included , it is possible

to distinguish between the two values and the gaussian sum filter

quickly selects the proper peak. This is shown in Figure 11 where

the value of n Is —0.2. Since the state has a negative value, the

gaussian filters all perform unsatisfactorily , so only the results
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of the gaussian sum filter are shown. This example demonstrates the

difficulty that a maximum likelihood estimator might encounter.

— It Is observed that the maximum value of p(xk Iz ’~
) switches back and

forth from positive to negative. Without complete knowledge of the

density function, it is unlikely that a procedure could be devised

that would reflect this behavior.

In the previously described use of gaussian sums, the gaussIan

sum approximation takes the form of a number of extended Kalman -

filters operating In parallel. It is easy to obtain an indication

of the computational burden that is associated with tbis nonlinear

filter. If q extended Kalman filters are required at each stage

of the sequence, then the gaussian sum requires approximately q

times as much effort as a single filter. The burden of a single

filter is well known [e.g., 37]. The general use of parallel pro-

cessors in this problem has been considered by several authors

C [38 — 41].-

In some problems it makes more sense to approximate P(x
k

/xk+l)

or P(
~k

/2s
~
) directly as a gaussian sum at each stage. In this case,

the number of terms in the gaussian sum approximation to the

a posteriori density grows with the number of stages. It is, how-

ever, possible to drop any term whose weighting coefficient, a1,

is negligible. It is also often possible to combine two or more

terms whose grid points from prediction fall sufficiently close

together. In this way the total number of terms in the gaussian

sum can be controlled.
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An example of this type is the vector tracking example whose

measurement density function P(zk/xk) was described earlier in FIg-

ure 8 and Equation (58).

The state vector propagates according to the linear plant

- / X k

- :  ~k+1 
= 

~k~~~~k ~k 
= I

and the state is observed by the scalar nonlinear measurement

function of Equation (58) where

— 

8k

where and ~ are given constants. The a priori random variables

xO, v~ , and are white, Independent , gaussian random variables

and sequences.

The preceding model arises in connection with the tracking

geometry of Figure 8 where target T at the position defined ~k
T 

=

(xk ~~ 
is undergoing a random walk in the two—d imensional state

space. The observer S is passively measuring the line—of—sight a as

it travels in a deterministic orbit around the unit circle.

Results obtained from the application of the gaussian sum

filter to a specific example are shown in Figure 12. The position

of the observer is shown by the cross on the unit orbit and the

43
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cross on the density function shows the true position of the target.

The a priori estimate for the initial state was taken to be

= 
(:.2 ) 

= 
(: :)~

while the true value of the initial state (and all subsequent

values since there is no plant noise) was taken to be

X

k 

= 

(:.5)

The measurement noise has a one sIgma value of 0.01 rad or about

one—half degree. The non—gaussian a posteriori filtering—density

function is seen to propagate from stage 1 to stage 9 in this figure

where a measurement is taken every 100 .

In Figure 13 results obtained using the extended Kalman

filter and the gaussian sum filter are compared. The parameters

1xk’ ~yk’ 
and Ak for a single realization are presented. The Improve-

ment provided by the gaussian sum filter is striking.

A number of other interesting nonlinear non—gaussian stochastic

dynamic systems have been investigated utilizing these techniques

in the literature, and the reader is directed there for more

details on specific problems. -
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If the covarlance tens in the “theorem fit” method of

r approximating densities Is made very small, one ends up with gaussian

shaped delta functions with a weighting equal to the function value

-: at that point. Such an approximation is a very bad fit to the density

in an L sense but distributions- and moments for such an approximation

can be arbitrarily close to those from the exact density as the density

of the grid increases. In this way one can move from the gaussian

sum density approximation to the “po int mass” approximation.

The point mass approximation was introduced by Bucy and Senne

in 1970. Bucy [29] and Bucy and Senne [30] have suggested that the error

covariance matrix be used to establish the region and the grid. Essen-

tially, the eigenvectors are used to define the principal axes. The

grid is centered at the mean value. The grid along each axis was chosen

to extend over a distance sufficient (e.g., 16 times the magnitude of

the corresponding elgenvalue) to insure that the true state is contained

within the grid region. The number of grid points is prescribed to

provide an adequate approximation. The basic method of defining the

grid is modified to suit the requirements imposed by a particular

problem. For example, when the a posteriori density is multiuiodal,

it is reasonable to define a grid for each mode rather than for the

entire density.
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P The manner In which the grid is updated at the next sampling

time is straightforward since the system dynamics provide the mean

values and the covariance matrix for the predictor density.

Once the grid points have been established , the density func—

tions can be evaluated at each of them. These values, after being

suitably normalized , can be regarded as point masses for a discrete

approximation of the distrIbutions. Using the point—mass approxima-

tion, the Bayesian recursion relations are readily evaluated. This

approximation is essentially equivalent to using a rectangular integra—

tlon rule to accomplish the numerical quadratures.

IX. NONLINEAR FILTERING-—A CRITICAL LOOK

Global nonlinear filtering is growing beyond its infancy. As

must be true for any inf ant, the first steps, as exemplified by

the work mentioned above, are exhilarating for those Involved and

can easily lead to overly ambitious claims and unwarranted optimism.

Viewed with even a modicum of perspective, however, it becomes

obvious that much work remains before the Inf ant will grow to

maturity. It is fun and,hopefully, worthwhile to attempt to predict

the character of the mature development and to suggest some activities

p that are required to shape the development.
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The basic objective of global nonlinear filtering migh t be

regarded as the development of a practical computational algorithm

which will permit the determination of the a posteriorl density to

any prescribed accuracy for any system. This is the achievement
p 

- of the Kalman filter for linear, gaussian systems.; if it can be

accomplished for nonlinear non—gaussian systems, the achievement

would be worthy of any of the scientific titans of history. The

developments described above do provide procedures for computing the

a posteriori density for any system. But they have the practical

limitation that the computational requirements associated with

their implementation are enormous. Thus, the development of an -

algorithm must be guided by the requirement of achieving compu—

tational efficiency. With the rapid development of mini—computers,
I

it appears that practIcal nonlinear filtering may be possible using

special—purpose rather than general—purpose digital computers. It

appears reasonable to consider, for example, the use of mini—

computers for parallel processing. Possibly, some of the general

ideas discussed by Korn [42] will prove useful.

Assuming that global nonlinear filtering methods will con— -

tinue to require substantially more computation than local filtering

techniques, it is natural to ask and attempt to answer the follow—

* 
lug questions. Under what conditions is it desirable and necessary

to assume the additional computational burden and utilize global

nonlinear filtering techniques? Certainly, no answer to this

I
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question that could be universally accepted exists at this time. How-

ever , some related considerations can be discussed.

Local filtering techniques in general and the

extended Kalman filter (EKF) in particular are looked upon

with scorn in some quarters because these approaches are “sub—

optimal.” In addition, the degree of suboptimality is not readily

determined. As a consequence, It is reasonable to solve the global

filtering problem if only to provide a reference against which local

methods can be compared. However, the continued use of the EKF

must be tolerated because it has proven to provide satisfactory

results for many nonlinear systems. This is especially true when

the filter is designed to monitor the residuals and to initiate

corrective action whenever a low frequency component is observed

that implies the onset of divergence . -

The success of the EKF forces a search for general circum—

stances in which this local filtering method cannot be expected to

perform satisfactorily . Certainly, one of the most important

- 
requirements is that an a priori estimate be available which permits

the local approximation to be valid initially. If it is impossible

to define an appropriate a priori estimate, then the EKF is doomed

to failure and a global filter is required. For many systems of

interest, this would appear to be an unlikely situation. Frequently,

the signal—to—noise ratio is sufficiently large that a reasonable

estimate can be obtained using only deterministic models. When
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more than one solution is possible, physical considera tion may permi t
p 

the determination of the only reasonable solution which can then be

used to initiate the EKF . If more than one a priori estimate must

be considered , the a posteriori density will be niultimodal so the

EKF cannot be used.

If the a posteriori density can be regarded as unimodal but

non—gaussian, the EKF must produce suboptimal results. Thus , it

may be desirable to utilize local or global procedures which elimi-

nate the gaussian assumption. In many cases, the EKF can be expected

• 
to provide pessimistic results since the gaussian density maximizes

entropy. As long as the residual is forced to be whIte, the EKF

should produce results that are satisfactory in some ways. More

complicated procedures may provide improvements but this would seem

to be very problem—dependent.

Finally, the signal—to—noise ratio may be so small that linear—

izations provide inadequate approximations with the result that the

EKF produces little data filtering. That is, the divergence control

logic may require past data to be discounted so strongly that only

current data is used in determining the estimate. Then, the estima— -]

tion error will be comparable or greater than the measurement noise

indicating the lack of any filtering (noise removal) activity. In

this case, global nonlinear filters may-be required in order to

extract the maximum information from the data.
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Among the advantages that can result from the use of global

nonlinear filtering are the following:

(a) It is not necessary to have a priori estimates of the state

that are sufficiently accurate to validate the linearization. Thus,
p

the problem of initializing the filter is eliminated.

(b) Situations in which the a posteriori density is multi—

modal are handled in a straightforward manner. The consideration

of multlmodality enters primarily through the definition of the grid

and the choice of estimator criterion.

(c) The elimination of the assumption that the a posteriori

density is gaussian can permi t more accurate statistical statements

to be made. A simple example is given in Ref. [19] which demonstrates

the insights possible from knowledge of the a posteriori density.

(d) Calculation of the a posteriori density provides a meaning—

ful reference which can be used to measure the performance of all

suboptimal procedures. The accurate calculation of p(xk/z
k
) permits

one to more rationally evaluate the effects of the approximations

used In suboptimal estimators. Generally, even suboptimal estimators

approach the optimal response of the global filter after a large

quantity of data has been processed. The difference In transient

response can be determined and can provide a measure of the adequacy

of a particular suboptimal algorithm.
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In the study of nonlinear filtering, it is not surprising to

P find that there are few analytical results and closed—form solutions.

Thus, to deal with these problems, it Is natural to see a concentra-

tion of effort on the development of computational proce-dures. In

this sense, the field is similar to the study of nonlinear program-

ming. Unlike the latter, we do not have standard test problems nor

extensive numerical studies of different algorithms which have been

• developed for the same general problem. It seems that this is a gap that

must be filled. Several problems that have appeared in the literature and

have been described above can serve as candidates for standard test

• problems. Rational criteria for comparing algorithms need to be

established. It should be incumbent upon the proposer of a new algo—

rithm to provide meaningful comparisons of his procedure with existing

algorithms. By this means one can hope to establish situations in

which specific algorithms will have demonstrable advantages.

As nonlinear filtering begins to see practical application, a

wealth of new problems will be uncovered and the research will

progress into new areas. A question which requires immediate con-

sideration arises when we contemplate the basic assumptions implicit

in the Bayesian recursion relations. This solution of the nonlinear

filtering problem supposes that we have a complete probabilistic

description of the system. In practice, one often considers himself

lucky to have information about the second moments. Thus, it is

naive to believe that the probabilistic model is justified.

I
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Consequently , it is imperative that the sensitivity to model errors

P be examined in considerable detail. On one hand, it might be possible

to reduce the computational burden associated with the current global

filters by exploiting the knowledge that model errors exist. On the

other hand , sensitivity to model errors might indicate the folly of

the Bayesian approach entirely and cause the redirection of research

activities into less model—dependent formulations.

P

I

I
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Figure 1. The true value of one sigma and the Kalman approximation

to it versus z
0
.

Figure 2. One to four - Gaussians in L
2 
search fit to a gamma density .

Figure 3. Gaussian sum approximation to uniform density L2 search fit

2 to 5 terms .

Figure 4. 1, 3, and 5 L~ search fit approximations to product density .

Figure 5. Gaussian sum approximations of uniform density functions.

Figure 6. 6 and 10 term Gaussian sum theorem fit approximation to a

gamma density.

Figure 7. Measurement density function and approximation.

Figure 8. The passive, bearings—only tracking problem.

Figure 9. Behavior of the a posteriori density——true and

approximate.,.
Figure 10. Filtering density and approximations. Solid line is true

PDF. Broken line is Gaussian sum, x x is second order .

+ ... ÷ is iterated.

Figure 11. Gaussian sum approximation to filtering density for nonlinear

plant and measurement. Solid line is Gaussian sum PDF.

o ..• . is true value of state. —0.2, ri = —0.2,

a 0 , and a = 0.05.
.!

Figure 12. Filtering density for vector tracking example.
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Figure 13. Relative performance of extended Kalman and Gaussian sum

filters for tracking problem. Broken line denotes Kalman.

Solid line denotes Gaussian sum.
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